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Abstract 

Great interest has been shown in understanding the pathology of Gaucher disease 

(GD), due to the recently discovered genetic relationship with Parkinson’s disease. For such 

studies, suitable animal models of GD are required. Chemical induction of GD by inhibition 

of acid β-glucosidase (GCase) using the irreversible inhibitor, conduritol B-epoxide (CBE), is 

particularly attractive, although few systematic studies examining the effect of CBE on 

development of symptoms associated with neurological forms of GD have been performed. 

We now demonstrate a correlation between the amount of CBE injected into mice and levels 

of accumulation of the GD substrates, glucosylceramide and glucosylsphingosine, and show 

that disease pathology, indicated by altered levels of pathological markers, depends on both 

levels of accumulated lipids and the time at which their accumulation begins. Gene array 

analysis shows a remarkable similarity in the gene expression profiles of CBE-treated mice 

and a genetic GD mouse model, the Gbaflox/flox;nestin-Cre mouse, with 120 of the 144 genes 

up-regulated in CBE-treated mice also up-regulated in Gbaflox/flox;nestin-Cre mice. We also 

demonstrate that various aspects of neuropathology and some behavioral abnormalities can be 

arrested upon cessation of CBE treatment during a specific time window. Together, our data 

demonstrate that injection of mice with CBE provides a rapid and relatively easy way to 

induce symptoms typical of neuronal forms of GD. This is particularly useful when 

examining the role of specific biochemical pathways in GD pathology, since CBE can be 

injected into mice defective in components of putative pathological pathways, alleviating the 

need for time-consuming crossing of mice. 

 

Key words: Gaucher disease, Parkinson’s disease, acid β-glucosidase, glucosylceramide, 

glucosylsphingosine, neuropathology, neuroinflammation.  
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Introduction 

Gaucher disease (GD), one of the most common lysosomal storage disorders (LSDs) 

(1), is caused by mutations in GBA1 (2), the gene encoding the lysosomal hydrolase, acid β-

glucosidase (GCase). The resulting GCase deficiency causes accumulation of the 

glycosphingolipids (GSLs), glucosylceramide (GlcCer) and its deacylated form, 

glucosylsphingosine (GlcSph), within the lysosomes of macrophages and other cells. GD is 

classified into three types, with all three displaying hepatosplenomegaly, anemia, 

thrombocytopenia, leukopenia and bone involvement (3, 4), with the neurological forms 

(nGD), type 2 (acute) and type 3 (chronic), displaying central nervous system (CNS) 

involvement in addition to systemic disease. The recently-discovered genetic association 

between mutations in GBA1 and Parkinson’s disease (5) has significantly enhanced the 

visibility of GD and nGD research, and renders characterization of nGD animal models of 

critical importance. Currently, two kinds of nGD mice are available, namely genetic models 

(6-14) and a chemically-induced model. In Gbaflox/flox;nestin-Cre mice (15), GCase deficiency 

is restricted to neurons and macroglia, with normal GCase activity in microglia, whereas K14-

lnl/lnl mice develop a more rapidly-progressing neurological disease (15). Both of these mice 

have proven useful in nGD research, but their limited life-spans and the severity of their 

symptoms restrict their usefulness. Injection with the irreversible GCase inhibitor, conduritol 

B-epoxide (CBE) (16), has also proved of great use, particularly since CBE crosses the blood 

brain barrier (BBB) (17). While CBE has been widely used, and increasingly so because of 

attention paid to the GD/Parkinson’s disease enigma, its use has been somewhat erratic, 

inasmuch as different laboratories inject with different doses, at different ages and using 

different species of mice (Table 1). 

To determine the appropriateness of CBE as a means to induce GD, and to fully 

characterize its action, we now systematically inject different amounts of CBE into mice of 
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different ages, and demonstrate that pathology is very similar to the two genetic models 

discussed above. Moreover, characterization of mice injected with CBE provides novel 

mechanistic insight into disease pathology. We suggest that the CBE model, even though it 

has inherent limitations, as do all mouse models, is nevertheless a useful and rapid means to 

induce nGD. In addition, we demonstrate that cessation of CBE treatment can arrest some but 

not all symptoms of nGD, and discuss how this experimental approach could be used to test 

the efficacy of potential therapies. 

 

Materials and methods 

Mice 

From postnatal days 8 or 15, C57BL/6 mice (Harlan Laboratories, Israel) were 

injected intra-peritoneally (IP) daily with 25, 37.5, 50 or 100 mg CBE (Calbiochem Millipore, 

Darmstadt, Germany) per kg body weight, or with PBS. Gbaflox/flox�mice were crossed with 

Gbaflox/WT;nestin-Cre mice to generate Gbaflox/flox;nestin-Cre mice and Gbaflox/WT;nestin-Cre 

mice, which served as healthy controls. Genotyping was performed by polymerase chain 

reaction. Mice with a mixed genetic background (C57BL6/J and CBA with further back-

crossings with C57BL6/J; Jackson Laboratories, USA) were also injected with CBE; this 

mouse expresses Thy1-YFP-H in some cortical neurons (18). Mice were maintained in the 

experimental animal center of the Weizmann Institute of Science. All animal experiments 

were approved by the Weizmann Institute Institutional Animal Care and Use Committee. The 

use of K14-lnl/lnl mice is documented in the Supporting Information. 

GCase activity assays and sphingolipid analysis   

GCase activity assay was performed as described, as was sphingolipid analysis by 

liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) 

(8); for more details, see the Supporting Information.  
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RNA extraction and quantitative PCR  

RNA extraction and quantitative PCR were performed as described (9). A detailed 

description, along with the primers used for PCR, is given in the Supporting Information.   

Immunohistochemistry 

MAC2 staining was performed as described (7) and a detailed description, along with 

the methods used for GFAP and fluoro-Jade C staining, is given in the Supporting 

Information.   

Microarray analysis  

Starting from postnatal day 8, C57BL/6 mice were injected IP daily for 10 days with 

25 mg CBE per kg body weight or with PBS. Microarray analysis was performed as 

documented in the Supporting Information.  

Behavioral experiments 

Behavioral tests were performed (23, 24) as documented in the Supporting 

Information. 

 

Results 

The effect of different concentrations of CBE on nGD pathology and comparison to 

Gbaflox/flox;nestin-Cre mice 

While previous studies have used a wide variety of CBE concentrations, ranging from 

7.5 to 300 mg/kg body weight (Table 1), little effort has been made to systematically compare 

the effects of CBE on development of nGD symptoms, and to determine how this correlates 

with levels of GlcCer and GlcSph accumulation. We injected C57BL/6 mice every day, 

starting on day 8, with different concentrations of CBE and measured the body weights of the 

mice and their life-spans. As might be predicted, the highest CBE concentration (100 mg/kg 

body weight) had the most dramatic effect, with C57BL/6 mice beginning to lose weight by 
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16 days of age and most not surviving beyond 20 days of age (Fig. 1A). Mice injected with 50 

mg/kg also displayed rapid weight loss, again starting on day 16, but survived longer, dying 

between 24 and 36 days of age. Lower doses had a less severe effect, but even the lowest (25 

mg/kg) led to death by 45 days of age, with a relatively high variability between individual 

mice (Fig. 1A). Interestingly, mice injected with 100 mg/kg CBE starting on day 15 lived 

considerably longer than mice injected from day 8 (Fig. 1B) and showed less severe 

symptoms, suggesting a hitherto unappreciated effect of the age of the mice on the ability of 

CBE to induce nGD symptoms. 

GCase activity was measured in vitro in brain samples from CBE-treated mice. GCase 

activity was reduced by >90-95%, irrespective of the concentration of CBE injected (data not 

shown). We next measured levels of GlcCer and GlcSph accumulation using a new LC-ESI-

MS/MS method (Duan et al., submitted for publication) that allows separation of 

hexosylsphingosine species into GlcSph and galactosylsphingosine (GalSph). GlcCer and 

GlcSph levels increased linearly with CBE concentration (Fig. 1C; r2 of 0.95 and 0.96, 

respectively). It should be noted that GlcSph levels in control mice (~0.2 ± 0.1 pmol/mg 

tissue) were close to the limit of detection, whereas GlcCer levels were significantly higher in 

control mice (~35 ± 5.7 pmol/mg tissue). A correlation was also observed between the 

average day of death of the mice and GlcCer levels (r2 = 0.91), and to a somewhat lower 

extent to GlcSph levels (r2=0.83). Levels of GlcCer (338 ± 74 pmol/mg tissue) and GlcSph 

(28 ± 12 pmol/mg tissue) in 21-day old Gbaflox/flox;nestin-Cre mouse were similar to levels 

observed in mice injected with >50 mg/kg body weight CBE; since GCase activity is only 

defective in cells of neuronal origin in Gbaflox/flox;nestin-Cre mice, this suggests even higher 

levels of accumulation in cells defective in GCase. Note that no significant changes were 

observed in either galactosylceramide (GalCer) or GalSph levels (Fig. 1C).  

To further dissect changes in sphingolipid levels, the N-acyl chain composition of 
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GlcCer was analyzed. Normal brain tissue contains particularly high levels of C18- and 

C24:1-sphingolipids (25), and as expected, this was the case in C57BL/6 mice injected with 

PBS (Fig. 1D and Table S2). However, the higher the CBE dose, the greater the increase in 

the proportion of C18:0-GlcCer and C18:1-GlcCer versus total GlcCer (C18:0-GlcCer was 

85% of total GlcCer upon injection of 100 mg CBE/kg body weight, compared to 68% using 

25 mg CBE/kg body weight), which were elevated at the expense of GlcCer with longer acyl 

chains. Likewise, the acyl chain composition of Gbaflox/flox;nestin-Cre mouse was biased 

towards C18-GlcCer; similar results have been obtained in other nGD mouse models (26). 

Since C18-GlcCer is most abundant in neurons (27), this data supports our previous finding 

using electron microscopy that significant levels of GlcCer accumulate in nestin-expressing 

cells (i.e. neurons and astroglia) in nGD mouse brain (8). Finally, we compared GlcCer levels 

in mice injected for 10 days with 100 mg/kg body weight CBE starting on day 8 vs. day 15. 

Significantly lower levels of both of these lipids were detected in the latter (Fig. 1E), 

consistent with data showing that CBE is less effective in generating nGD symptoms when 

injected into slightly older mice (Fig. 1A, B). 

Biochemical and genetic profile of CBE treated mice 

We have recently shown changes in levels of a number of inflammatory and other 

gene transcripts in Gbaflox/flox;nestin-Cre mice ((6, 7, 28) and unpublished data), and we now 

compare these changes with those observed in mice injected with CBE. The trend of the 

changes in gene expression was similar, although changes occurred to a different extent (Fig. 

2A). Expression of two neuronal genes (Grin2b and Kctd16) decreased to a similar extent in 

CBE and Gbaflox/flox;nestin-Cre mice, presumably due to neuronal loss, whereas levels of 

inflammatory genes (such as Gfap, Ccl3 and Ccl2) increased as the CBE concentration 

increased and reached levels similar to those detected in the Gbaflox/flox;nestin-Cre mouse (Fig. 

2A). Members of the RipK pathway (Rip1, Rip3 and Pkr) (6) were elevated to a somewhat 
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lower extent in CBE-injected mice compared to Gbaflox/flox;nestin-Cre mice, as were Ccl5 and 

Irf7, and the expression levels of some of these genes showed little or no correlation to levels 

of lipid accumulation. Levels of Gfap, a marker of astrogliosis, and of Gpnmb, a protein 

recently shown to act as a genuine nGD marker (28), correlated with CBE levels. The 

expression of most of the genes correlated linearly with changes in GlcCer and/or GlcSph 

levels, e.g. Ccl5, Cd68 and Ccl2, a macrophage-derived cytokine that was suggested to be 

elevated by GlcCer (10, 29). 

We next performed a gene array study using the cortex of C57BL/6 mice injected with 

25 mg/kg CBE from days 8 to 18. Table 3 indicates the top 10 up- and down-regulated genes 

in the array. Next, we compared genes altered in mice injected with CBE (fold-change ≥1.5, p 

value ≤0.05) with those altered in the ventral posteromedial/posterolateral (VPM/VPL) region 

of the thalamus of 14-day old Gbaflox/flox;nestin-Cre mice (fold-change ≥2, p value ≤0.05; 

Vitner et al., submitted for publication). The number of genes increased in Gbaflox/flox;nestin-

Cre mice was ~4 fold higher than in CBE-treated mice (Fig. 2B), presumably because the 

disease in the CBE model is less severe at this stage; however, striking similarities were 

found. Thus, 144 genes were up-regulated in CBE-treated mice, of which 120 were also up-

regulated in Gbaflox/flox;nestin-Cre mice. Common up-regulated genes were next subjected to 

pathway analysis. Among these genes, inflammatory pathways such as complement system 

and the interferon signaling pathway, were highly enriched (Fig. 2C). Notably, inflammatory 

genes were up-regulated in both models even though, as opposed to the CBE model, the 

Gbaflox/flox;nestin-Cre mouse does not accumulate GlcCer and GlcSph in microglia. 

Interestingly, many of the genes that were up-regulated only in the Gbaflox/flox;nestin-Cre 

mouse belong to the same pathways as altered in mice injected with CBE. However, there 

were several pathways that were enriched only in the Gbaflox/flox;nestin-Cre mice, including 

death receptor signaling (Fig. S1), which may be related to neuronal loss observed in the 



A
cc

ep
te

d 
A

rti
cl

e
Gbaflox/flox;nestin-Cre at day 14 compared to the little neuronal loss observed in mice injected 

with CBE at day 18. 

We next examined the regional selectivity of pathological changes in CBE-treated 

mice compared to Gbaflox/flox;nestin-Cre mice. Mice were injected with 37.5 mg/kg body 

weight CBE starting on post-natal day 8, followed by examination of MAC2 

immunoreactivity at various times (7). A low level of MAC2 immunoreactivity was observed 

on day 14 (Fig. 3A), but by day 18, microglia activation was evident in many brain areas, 

though predominantly in the brain stem and in cortical layer V. By 25 days, MAC2 

immunoreactivity was widespread. Interestingly, the brain stem displayed much stronger 

MAC2 immunoreactivity in CBE-treated mice than Gbaflox/flox;nestin-Cre mice. As in 

Gbaflox/flox;nestin-Cre mice, a number of brain areas did not show neuropathology (Table 2). 

We also analyzed pathology in the K14-lnl/lnl mouse, as these mice accumulate 

GlcCer in all cell types in the brain (15) (Fig. 3B). The highest level of MAC2 staining was 

observed in the K14-lnl/lnl mouse, although previous observations (15) suggested more 

extensive MAC2 labeling in Gbaflox/flox;nestin-Cre mice; it should be noted that the K14-

lnl/lnl mice used in the current study were backcrossed onto an outbred CD1 background, 

whereas in the original study mice were generated on a C57BL/6 background. The main 

differences between the three mice was that K14-lnl/lnl mice showed extensive MAC2 

labeling throughout the brain, and most prominently in the brain stem, as also observed in 

mice injected with CBE (Table 2).  

Use of the CBE model in determining pathological pathways and for testing therapeutic 

windows 

 We now took advantage of the accessibility and flexibility of inducing CBE in mice to 

further examine the temporal sequence of events leading to neuronal cell death and 

neuroinflammation, and to examine putative therapeutic windows upon cessation of CBE 
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treatment. We compared the time of appearance of degenerating neurons with the appearance 

of MAC2-positive microglia and GFAP-labeled astrocytes in mice treated with 37.5 mg/kg 

CBE. In contrast to Gbaflox/flox;nestin-Cre and K14-lnl/lnl mice, in which it is not possible to 

temporally distinguish between the appearance of MAC2-positive cells and neuronal loss (7), 

MAC2-positive cells were clearly visible on CBE day 18, when very few degenerating 

neurons (labeled with Fluoro-Jade C) were detectable (Fig. 4). The number of MAC2-positive 

cells increased significantly by day 25, although the number of Fluoro-Jade C-positive cells 

was still very low. A similar sequence was observed for GFAP-positive cells, indicating that 

microgliosis and astrogliosis precede neuronal loss.  

 Another advantage of the CBE model compared to genetic models is that CBE 

treatment can be stopped at various times, allowing examination of the reversibility of the 

pathology. We injected mice from a mixed genetic background (C57BL6/J and CBA) (18) 

with 100 mg/kg of CBE from post-natal day 15 for various lengths of time, followed by 

cessation of CBE treatment. The first group of mice was injected with CBE from days 15-35, 

with CBE treatment stopped in some mice on day 25 (Fig. 5). In the second group, mice were 

injected with CBE from days 15-48, with CBE treatment stopped in some mice on day 25, 

allowing a longer period of recovery after cessation of CBE treatment (Fig. 5). The third 

group of mice was injected with CBE for a longer period, from days 15-40, with CBE 

treatment stopped in some mice on day 30 (Fig. 6). The last group of mice was injected with 

CBE from days 15-74, with CBE treatment stopped in some mice on day 30 (Fig. 6).  

In the first group, no effect on symptoms (i.e. body weight) was detected by day 24, 

but mice treated continuously with CBE lost considerable weight by day 35. Upon cessation 

of CBE treatment on day 24, mice gained weight similarly to control mice (Fig. 5A). Despite 

the lack of overt signs, a significant number of MAC2-positive cells were detected in CBE-

treated mice on day 25, although considerably fewer MAC2-positive cells were seen on day 
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35 when CBE treatment was stopped on day 25 (Fig. 5B). Mice injected with CBE from days 

15-25 displayed impaired motor behavior (Fig. 5C). Thus, the latency to fall was reduced by 

almost 1 min on the rotarod compared to the PBS-injected control group; in the hang wire 

test, mice injected with CBE normally fell off the wire within 10 seconds, due to difficulties 

using their hind limbs to hold on to the wire. The manual catwalk test demonstrated an 

increase in inter-limb distance of 0.5 cm in the group injected with CBE. Cessation of CBE 

treatment on day 25 led to no significant improvement in any of these parameters by day 35 

or day 48, although, importantly, no deterioration in the behavioral parameters was detected 

(Fig. 5C).  

The other two groups of mice were injected with CBE for longer period (days 15-30) 

and allowed to recover for a longer time (up to day 74) (Fig. 6). The additional time of 

injection with CBE had a deleterious effect, inasmuch as the mice did not gain body weight 

after cessation of CBE treatment on day 30 (Fig. 6A), and continued to lose weight, although 

a moderate reduction in the number of MAC2-positive cells (Fig. 6B) was observed. The 

number of MAC2-positive cells in cortical layer V increased almost 2-fold on day 74 in mice 

continuously injected with CBE; in this group, a number of mice died by day 74, which was 

accompanied by severe neuronal degeneration. No improvement in any behavioral parameters 

was detected (Fig. 6C), and even after cessation of CBE treatment, mice continued to 

deteriorate, exhibiting almost zero latency in the rotarod test and inability to hold on to the 

wire in the hang wire test, due to limb paralysis. 

 

Discussion 

In the current study, we have systematically characterized the use of CBE to induce 

GD in mice. The availability of a chemical inhibitor of GCase should, in principle, allow in-

depth study of GD development in animal models, and should render GD more accessible to 
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experimental manipulation than almost all other LSDs, for which chemical inhibitors of the 

defective lysosomal enzymes are not readily available. Moreover, the enigmatic relationship 

between GD/nGD and PD is amenable to study using CBE. Although all the above statements 

appear axiomatic, the lack of methodical study of the dose, time of injection, levels of 

accumulation and comparison with genetic models of nGD has often led to skepticism 

regarding the suitability of CBE as a tool to induce GD/nGD, which the current study seeks to 

alleviate. 

Unsurprisingly, we first showed that the amount of CBE injected into mice directly 

affects the course of development of GD pathology. However, injection of the same dose of 

CBE into 15-day-old mice resulted in far less severe pathology than in mice injected from day 

8, suggesting that (i) the blood-brain barrier prevents CBE entry in older mice (30, 31), (ii) 

that CBE is less efficient in inhibiting GCase in older mice, (iii) that the brain is less sensitive 

to GlcCer accumulation in older mice, or (iv) that different levels of GlcCer synthesis in 

younger vs. older mice could affect the efficacy of CBE. Irrespective of the precise reason for 

this age-dependent change, the use of higher doses (Table 1) of CBE in older mice is thus 

justified.  

The linear increase in levels of GlcCer and GlcSph accumulation upon increasing 

amounts of CBE is not surprising, but nevertheless supports the concept that disease severity 

is directly related to levels of substrate accumulation. Comparison of levels of GlcCer and 

GlcSph accumulation in mouse models compared to human patients is difficult, due to 

different methods of measurement, different units often used for quantification and large 

variability between different human samples, which might be related to parameters such as 

tissue storage post mortem (Table 4).  

It should be stressed that a number of studies have injected relatively high amounts 

(100 mg/kg) of CBE into mice, such as those to examine the relationship between PD and 



A
cc

ep
te

d 
A

rti
cl

e
GD. While these studies have uncovered important findings, such as accumulation of α-

synuclein, neurodegeneration and gliosis (32, 33), it should be noted that most GD patients 

have residual levels of GCase activity, and GD carriers with a higher susceptibility to develop 

PD have GCase activity in the range of ~50% of normal; we therefore suggest that although 

more time-consuming, a better way to study the GD/PD connection might be injection of low 

doses of CBE (<25 mg/kg) for longer periods of time, whereas the higher concentrations (>50 

mg/kg) might be better suited for studying the acute forms of nGD. However, it should be 

noted that in general a larger variability in the phenotype of mice was observed when using 

lower doses of CBE, necessitating use of a larger group of mice, that should preferably be 

littermates with similar weights at the beginning of the injection period.  

A previous concern using CBE was that it might not fully mimic the pathology 

observed in genetic models of GD or in human nGD patients. The reasons for this concern 

were three-fold. First, CBE might have off-target effects, i.e. inhibit other enzymes, which 

could influence pathology. Second, the penetration, or lack of penetration of CBE across the 

BBB might result in different patterns of brain pathology from those observed in genetic 

models. Third, induction of an LSD by chemical inhibition might miss changes that are due to 

the unfolded proteins often caused by amino-acid substitutions in GCase (34).  

Although the first concern cannot be completely excluded, it is noticeable that many 

earlier studies reporting off-target effects of CBE in animal models used extremely high doses 

(sometimes as high as 300 mg/kg (35)). In vitro studies have shown that CBE can inhibit 

other enzymes such as GBA2, an extra-lysosomal GCase (36), but with lower affinity than 

GBA1 and at a much lower rate (37). CBE has also been shown to inhibit some retaining α-

glucosidases (38) and lactase-phlorizin hydrolase (39). We conclude that although CBE might 

have minor off-target effects, few if any of these are likely to be responsible for the pathology 

observed, particularly using low levels of CBE. This does not alleviate the need to produce 
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better and more specific GCase inhibitors (40), but currently CBE is the cheapest and best 

commercially-available inhibitor. Finally, off-target effects of CBE could be further ruled out 

by treating Gbaflox/flox;nestin-Cre mice with CBE. 

The second concern, that CBE might not mimic GD pathology, can also be alleviated 

by the current study, in which we show a remarkable overlap in gene profile changes after 

CBE injection, compared to Gbaflox/flox;nestin-Cre mice, and a rather similar pattern of brain 

pathology. This is particularly true when comparing the low dose of CBE with the 

Gbaflox/flox;nestin-Cre mice, although more severe brain pathology was seen in K14-lnl/lnl 

mice, which itself is not surprising based on the severity of the latter; presumably, a more 

severe pattern of pathology would be observed using a higher dose of CBE, although this is 

not something that we directly analyzed. It should also be noted that the regional pathology is 

somewhat similar to that in the few human brain samples that have been systematically 

analyzed. Thus, our current study negates to a large extent concerns that CBE does not cause 

similar pathological changes as in genetic models or in human patients. 

The third concern, that CBE is a chemical inhibitor rather than mimicking the effect of 

unfolded, mutated proteins, is less tractable. However, mice treated with CBE do develop 

classical GD/nGD symptom, though whether a small subset of symptoms do not develop 

which might be induced by the unfolded protein response, cannot be excluded.  

Having validated the use of CBE as a genuine tool to induce GD/nGD symptoms, we 

then further demonstrated the usefulness of this model by using it to tease out the temporal 

sequence of events that result in neuronal cell loss, astrogliosis and microgliosis; this is not 

possible using either the Gbaflox/flox;nestin-Cre or K14-lnl/lnl mice due to the rapid 

pathological progression in these mice. Moreover, cessation of CBE injection can be used to 

determine which symptoms are reversible, and which are not. Finally, a major advantage of 

the use of CBE is examination of the role of specific biochemical pathways in GD pathology, 
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as exemplified in our recent study showing a role for the Ripk pathway in nGD pathology (6), 

since CBE can be injected into mice defective in components of putative pathological 

pathways without the need for time-consuming crossing of mice. CBE can also be used in the 

study of other putative therapies, such as gene therapy (41), substrate reduction therapy (42), 

and for the study of biomarkers (28). 

In summary, we have shown that, although it has some limitations, CBE provides an 

attractive and easy way to induce Gaucher disease in mice, which mimics to a large extent 

that which is observed in the two available mouse models that mimic neurological forms of 

GD. 
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Table 1. The use of CBE in GD research. 
 

Mouse 
strain 

CBE 
concentration 
(mg/kg/day) 

Agea 
(days) 

 

Duration of CBE 
treatment 

(Days)  

Major findings Ref. 

C57/Bl 100 
 

90  21  GlcCer levels elevated, and GCase activity reduced by 93% in 
brain, liver, and spleen. Activity of six other lysosomal hydrolases 
unaffected. 
 

(16) 

SWR/J 100 1  28 No Gaucher cells detected but spleen and liver showed irregular 
granules and fibrils. Neurons showed fibrils and tubular structures 
in the ER. 
 

(43) 

BALB/c 
 

7.5,10 42-56 1  GCase activity was minimal the day after injection and returned to 
40-50% by the 3rd/4th day. 

(44) 

BALB/c  10 42-56 42b  No elevation in GlcCer levels.  
BALB/c  

 
10, 25,50,100 42-56 21-28 GCase activity decreased by ~68-88% using 10, 25 or 50 mg/kg 

and >90% using 100 mg/kg; similar levels of accumulation in brain 
and liver. 

BALB/c 
 

100 42-56 21-28 Liver GCase activity gradually increased to ~50% of basal activity 
between day 4 and 8 after last injection and was 73% by day 12. 
Brain GCase activity increased more slowly.  
 

CF1 100 16 1 No detectable GCase activity in liver, spleen, brain, and kidney 
within 5 hours. Restoration of activity within 1 day (2 days in the 
case of brain) to ~80% of normal within 16 days. Reduction of aryl 
β-glucosidase activity (50%).  
 

(45) 

BALB/c 
 

100 42-56 30 Several biochemical characteristics similar to human GD patients. 
  

(46) 

BALB/c 
 

100 4 14 
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CF-1 300 16  1  Effect on glucose-containing glycoprotein levels  
 

(35) 

CF-1 100 16  8  Increase in brain and liver size. 
 

C57BL/6 ~20  
 

28 1  [3H]CBE rapidly distributed in the body but to a smaller extent in 
brain (~1/10 of systemic levels). Half-life of [3H]CBE was ~7 hours 
and is not metabolized. >90% inhibition of GCase activity within 1-
2 hours, with recovery of activity beginning after 4-12 hours. 
 

(17) 

CF-1 100 16 1 Rapid elevation in liver and brain saposin C. Increase persisted in 
both organs for at least seven days. 
 

(47) 

CF-1 80 16  1  Injection of emulsified GlcCer along with CBE caused rapid liver 
growth. Activity of thymidine kinase increased 46-73%, and 
activity of ornithine decarboxylase by 101%. 
 

(48) 

CF-1 80 16 1 Injection of emulsified GlcCer along with CBE caused rapid liver 
growth which was accelerated by phosphatidylserine. 
 

(49) 

hr/hr 375nmolc 56-84 1 brCBEe injection leads to <5% of normal epidermal GCase activity. 
 
 

(50) 

hr/hr 
 

10µmolc 42-56 2d Increased epidermal GlcCer localized largely to the basal, 
proliferative cell layer. 
 

(51) 

hr/hr 
 

100µgc 30-720 1-2d 1.5- to 1.9-fold increase in epidermal DNA synthesis producing 
epidermal hyperplasia.  
 

(52) 

BALB/c 
 

100 42-56 1  Used to demonstration feasibility of gene therapy; transduction of 
hepatocytes with human GCase resulted in normalization of 
Kupffer cell GlcCer levels. 
 

(41) 
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BALB/c 100 20 1  New method for measuring GBA activity. 
 

(53) 

D409V, 
D409H, 
V394Lf  

100 
 

5-15 
 

10  
 

Recapitulated the CNS phenotype of kn-9H mice GD mice. 
Neuronal degeneration was progressive in the 2 to 5 months after 
cessation of CBE injection. 

(54) 

C57BL/6 200 56 1  α-synuclein distribution was perturbed with accumulation in nigral 
cell bodies and astroglia. 
 

(55) 

D409V, 
D409H, 
V394Lf  

100 5  6  No α-synuclein accumulation. Shaking and paralysis after 6 
injections. 

(56) 

24/36  Hind limb paralysis and small amounts of α-synuclein 
accumulation. 

C57BL/6 
 

100 56 9  Markedly reduced striatal dopamine release and other changes in 
synaptic plasticity; altered  microRNA profile and a  
reduction in post-synaptic density size. 
 

(33) 

Ripk3-/- 25 56  Amelioration of nGD symptoms. 
 

(6) 

C5aR-/-    No nGD signs. 
 

(57) 

C57BL/6 100 15  ~30  Reduction in GPNMB levels in the cerebrospinal fluid upon 
cessation of CBE. 
 

(28) 

BDF1 100 21-28 28 Accumulation of insoluble α-synuclein aggregates in the substantia 
nigra; altered levels of proteins involved in the 
autophagy/lysosomal system, and widespread neuroinflammation, 
upregulation of complement C1q, abnormalities in synaptic, axonal 
transport and cytoskeletal proteins, and neurodegeneration. 
 

(32) 

a Age of mice at first injection; b CBE was injected every other day; c Topical injection; d 2 doses 5 hours apart; e Bromoconduritol B epoxide; 
f CBE was injected to all three strains 
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Table 2.  Characterization and extent of microgliosis in nGD mouse models. Microgliosis 
was analyzed using MAC2 immunoreactivity at the end stage of the disease (CBE, 37.5 
mg/kg from day 8 to 25; K14-lnl/lnl, day 14; Gbaflox/flox;nestin-Cre day 21). + indicates 
MAC2-immunoreactive microglia and - indicates no MAC2 immunoreactivity. n = 3. 

 CBE 
 

       K14-lnl/lnl Gbaflox/flox;nestin-
Crea 

                                                                    General features 

Severity     Range of severity Dies at ~2 weeks. Dies at ~3 weeks

Affected organs Systemic and brain Systemic and 
brain  

Brain 
 
 

Brain region MAC2-immunoreactivity 

Olfactory bulb + + + 

Cortical layer Vb + + + 

Basal ganglia   

Globus pallidus (GP) b + + + 

Substantia nigra (SN) b + + + 

Hippocampus c - + + 

Hypothalamus - + - 

Thalamic nuclei d  

Reticular nucleus (Rt) + + + 

VPM/VPL + + + 

Midbrain  

Red nucleus + +         + 

Periaqueductal gray 
(PAG) 

- + - 

Pons and medulla b  

Reticulotegmental 
nucleus of the pons 
(RtTg) 

- + + 

Pontine nucleus 
(Pn) 

+ + + 

Facial nucleus (7N) - + - 

Vestibular nucleus 
(Ve) 

- + + 

Motor trigeminal 
nucleus (5N) 

+ + - 

a Taken from Ref. 7; b Gliosis was documented in patients (4), (58, 59); c Gliosis was 
documented in patients in hippocampal layers CA2 to CA4 (58); d Gliosis was documented in 
patients in some thalamic nuclei (59).
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Table 3. Top 10 up- and down- regulated genes in CBE-treated mice. Mice were injected 
with 25 mg/kg starting on day 8 for 10 days, and genes were analyzed in the cortex.  
 

Gene 
symbol 

Gene name Fold-change 
(CBE 

versus PBS) 

p value 

Top 10 up-regulated genes 

Ifit1 Interferon-induced protein with tetratricopeptide 
repeats 1 

8.7 <0.001 

Lilrb4 Leukocyte immunoglobulin-like receptor, subfamily 
B, member 4 

8.2 <0.001 

Oasl2 2'-5' Oligoadenylate synthetase-like 2 7.8 <0.001 

Ccl5 Chemokine (C-C motif) ligand 5 6.5 <0.001 

Usp18 Ubiquitin specific peptidase 18 6.4 <0.001 

Cxcl10 Chemokine (C-X-C motif) ligand 10 6.2 <0.001 

Ifi44 Interferon-induced protein 44 5.8 <0.001 

Bst2 Bone marrow stromal cell antigen 2 5.1 <0.001 

Ccl3 Chemokine (C-C motif) ligand 3 4.9 <0.001 

Cybb Cytochrome b-245, beta polypeptide 4.0 <0.001 

 
Top 10 down-regulated genes 

 
Agxt2l1 Alanine-glyoxylate aminotransferase 2-like 1 -1.91 <0.01 

Snora44 Small nucleolar RNA, H/ACA box 44 -1.91 <0.01 

Ptgds Prostaglandin D2 synthase (brain) -1.89 <0.05 

Rn5s20 5S RNA 20 -1.73 <0.05 

1700048
O20Rik 

RIKEN cDNA 1700048O20 gene -1.62 <0.01 

Vmn2r15 Vomeronasal 2, receptor 15 -1.57 <0.01 

Dcn decorin -1.56 <0.05 

Pcdhb8 protocadherin beta 8 -1.56 <0.05 

Mup3 major urinary protein -1.56 <0.05 

Fmod fibromodulin -1.54 <0.05 
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Table 4. GlcCer and GlcSph levels in human GD patient brain tissue. 
 

 

 

a Values in parenthesis indicate fold-change vs. controls; b Additional brain areas are given in the original paper;  c High performance thin layer 
chromatography(HPLTC), two-dimensional thin-layer chromatography (2D-TLC); d Originally this sample was thought to be type 1 but further 
investigation suggest that it might be type 3; e 5 samples were analyzed and significant diversity was noted between them; f High performance 
liquid chromatography; g From fetal tissue.

GD type GlcCer 
 

GlcSph 
 

Unit Brain area Assay and 
separation 
methodc 

Reference 

2 140-530 (20-80x)a 3.8-8.8 μmol/kg wet weight Cerebral cortexb HPTLC (60) 
3 37-65 (7-13x) 0.8-4.6 μmol/kg wet weight Cerebral cortex HPTLC 
1d 38 (8x) 0.7 μmol/kg wet weight Cerebral cortex HPTLC 

3 59-1750 (4-109x)e   1.4- 6.3 μmol/kg wet weight Cerebellar cortexb HPTLC (61) 

1 36-92 (7-18x) 0.2-2.4 μmol/kg wet weight C e r e b r a l  
cortexb 

HPTLC (62) 

2 1.9  nmol/mg protein Temporal cortexb HPLC (63) 
 3 1.4  nmol/mg protein Temporal cortex HPLC 

2  9.8-935e ng/mg protein -- HPLC (64) 
3  8.9 ng/mg protein -- HPLC 
1  0.34 ng/mg protein -- HPLC 

2  304-437g ng/mg protein -- HPLC  (65) 

3  14-32 ng/mg protein -- HPLC  (66) 
2  24-437 ng/mg protein -- HPLC 
1  1 ng/mg protein -- HPLC 

2 27.95 (14x) 4.88 (5x) ng/mg protein Cerebellum   2D-TLCi (67)  

2 8-36 (13x) 1.8-4.8 nmol/mg protein Temporal lobe 2D-TLC (68) 
  3 7-15 (5.5x) 0.2-1.2 nmol/mg protein Temporal lobe 2D-TLC 
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survival curve (lower panel) of C57BL/6 mice injected IP with PBS (n=4) or 100 mg/kg body 

weight CBE (n =4) starting at 15 days of age. Values are means ± s.e.m. (C) GlcCer, GlcSph 

(upper panel), GalCer (middle panel) and GalSph (lower panel) levels in brains of C57BL/6 

mice injected IP with PBS or 25, 37.5, 50 or 100 mg/kg body weight CBE from post-natal 

days 8 to 18 (n=3). Lipid levels in 21-day old Gbaflox/WT;nestin-Cre mice  (+/-) and 

Gbaflox/flox;nestin-Cre (-/-) mice (n=3) are also shown. Values are means ± s.e.m. (D) N-acyl 

chain composition of GlcCer. (E) GlcCer (upper panel) and GlcSph (lower panel) levels after 

injecting mice for 10 days with 100 mg/kg CBE starting either on post-natal days 8 or 15. * 

p≤0.05; ** p≤0.01; *** p≤0.001. 
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Figure 2. Gene expression in CBE-treated and in Gbaflox/flox;nestin-Cre mice. (A) mRNA 

levels of inflammatory genes,  neuronal genes (bold) and genes associated with the Rip 

pathway (bold italics) were measured by qPCR on total mRNA extracted from the cortex of 

C57BL/6 mice injected IP with PBS or 25, 37.5, 50 or 100 mg/kg body weight CBE from day 

8 to the end-stage of the disease (see Fig. 1A), and compared with levels of the same genes in 

21-day-old Gbaflox/flox;nestin-Cre mice. Results are a ratio of CBE-treated mice vs. PBS-

treated mice, and are means ± s.e.m. (n=2-3). * p≤0.05; ** p≤0.01. CT values were 

normalized to levels of TBP. Levels of each gene were correlated with levels of GlcCer (GC) 

or GlcSph (GS) measured for each dose of CBE (see Fig. 1C). (B) Venn diagram of the 

number of genes increased >2-fold in Gbaflox/flox;nestin-Cre mice (day 14, n=3) and >1.5-fold 

for C57/BL6 mice treated with 25 mg/kg CBE from days 8-18, n=3. Up-regulated genes in 

Gbaflox/flox;nestin-Cre mice are in purple and up-regulated genes in the CBE model are in pink. 

(C) Ten most significantly enriched pathways for up-regulated genes in C57/BL6 mice treated 

with 25 mg/kg CBE and in 14 day-old Gbaflox/flox;nestin-Cre mice. The plot shows the 

enrichment p values.  
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